如图,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形边长为
(2)请用两种不同的方法表示图(2)阴影部分的面积;
方法一: 方法二:
(3)观察图(2),写出三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.
(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.
大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x(x+y)=2x2+2xy就可以用图的面积表示.
(1)请写出图(2)所表示的代数恒等式: ;
(2)请写出图(3)所表示的代数恒等式: ;
(3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2.
声速y(米/秒)与气温x(℃)之间的关系如下表所示:
气温x(℃) | 0 | 5 | 10 | 15 | 20 |
音速y(米/秒) | 331 | 334 | 337 | 340 | 343 |
从表中可知音速y随温度x的升高而升高,在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,请问此人距发令地点约有多少米?
化简与求值:
(1)化简:[(a+b)(a﹣b)﹣(a﹣b)2]+2b(a+b)
(2)已知:16×2m+1=29,求m的值.
计算下列各题:
(1)(﹣1)2018﹣2(π﹣1)0+(﹣)﹣2
(2)(2a﹣4)(a+5)﹣2(a﹣10)
(3)(2x+3y)(﹣2x+3y)﹣(x﹣3y)2
(4)(4x3y﹣6x2y2+12xy3)÷2xy
如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:
①学校离小明家1000米;
②小明用了20分钟到家;
③小明前10分钟走了路程的一半;
④小明后10分钟比前10分钟走得快,
其中正确的有_____(填序号).