两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”为了便于记忆,同学们可仿照图用双手表示“三线八角”两大拇指代表被截直线,食指代表截线下列三幅图依次表示
A. 同位角、同旁内角、内错角 B. 同位角、内错角、同旁内角
C. 同位角、对顶角、同旁内角 D. 同位角、内错角、对顶角
在平面直角坐标中,点M(-2,3)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
如图,抛物线与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知,.
求抛物线的解析式;
在抛物线的对称轴上是否存在点P,使是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,的面积最大?求出的最大面积及此时E点的坐标.
我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,平均每天可盈利y元.
写出y与x的函数关系式;
当该专卖店每件童装降价多少元时,平均每天盈利400元?
该专卖店要想平均每天盈利600元,可能吗?请说明理由.
阅读题例,解答下题:
例解方程
【解析】
当,即时
当,即时
解得:不合题设,舍去,
解得不合题设,舍去
综上所述,原方程的解是或
依照上例解法,解方程.
如图,矩形ABCD的两边长,,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动当Q到达C点时,P、Q停止运动设运动时间为x秒,的面积为
求y关于x的函数关系式,并写出x的取值范围;
求的面积的最大值.