满分5 > 初中数学试题 >

如图,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于...

如图,已知抛物线(a≠0)x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;

(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;

(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.

 

(1)y=-x2-2x+3(2)(-,)(3)满足条件的点P的坐标为P(-1,1)或(-1,-2) 【解析】 试题(1)将A、B两点的坐标代入抛物线的解析式中,即可求出二次函数的解析式; (2)过E作EF⊥x轴于F.设E(a,)(﹣3<a<0),则EF=,BF=a+3,OF=﹣a,∴S四边形BOCE==BF•EF+(OC+EF)•OF =,配方即可得出结论,当a=时,=大,即可得到点E的坐标; (3)由P在抛物线的对称轴上,设出P坐标为(﹣2,m),如图所示,过A′作A′N⊥对称轴于N,由旋转的性质可证明△A′NP≌△PMA,得到A′N=PM=|m|,PN=AM=2,表示出A′坐标,将A′坐标代入抛物线解析式中求出相应m的值,即可确定出P的坐标. 试题解析:(1)∵抛物线()与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:; (2)如图2,过点E作EF⊥x轴于点F,设E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四边形BOCE==BF•EF+(OC+EF)•OF===,∴当a=时,S四边形BOCE最大,且最大值为.此时,点E坐标为(,); (3)∵抛物线的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,如图,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP与△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).
复制答案
考点分析:
相关试题推荐

将两块斜边长相等的等腰直角三角板按如图①摆放斜边AB分别交CD,CE于M,N点.

(1)如果把图①中的△BCN绕点C逆时针旋转90°得到△ACF连接FM如图②,求证:△CMF≌△CMN;

(2)将△CED绕点C旋转则:

当点M,N在AB上(不与点A,B重合)时线段AM,MN,NB之间有一个不变的关系式请你写出这个关系式并说明理由;

当点M在AB上点N在AB的延长线上(如图③)时,①中的关系式是否仍然成立?

 

查看答案

某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=x+6030≤x≤60).设这种双肩包每天的销售利润为w元.

1)求wx之间的函数关系式;

2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?

3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.

 

查看答案

如图所示,在矩形ABCD中,点EAD上,EC平分∠BED

1)试判断△BEC是否为等腰三角形,并说明理由.

2)若AB=1,∠ABE=45°,求BC的长.

3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形?请说明理由.

 

查看答案

如图,直线和抛物线都经过点

m的值和抛物线的解析式;

求不等式的解集直接写出答案

 

查看答案

已知关于x的方程x22m+1x+m2=0  

1)当m取何值时,方程有两个相等的实数根;

2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个根.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.