(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a、b的式子表示);
(2)应用:点A为线段BC外一动点,且BC=4,AB=2,如图2,分别以AB、AC为边,作等边三角形ABD和等边△ACE,连接CD、BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值;
③直接写出△DBC面积的最大值.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)(观察猜想)当点E在AB的中点时,如图1,过点E作EF∥BC,交AC于点F,观察猜想得到线段AE与DB的大小关系是 ;
(2)(探究证明)当点E不是AB的中点时,如图2,上述结论是否成立,如果成立,请写出解答过程,如果不成立,请说明理由;
(3)(拓展延伸)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为2,AE=1,求CD的长(请直接写出结果).
如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点F,交AB于点E.求证:BF=FC.
如图,在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1)
(1)在图中作出△ABC关于y轴对称的△A1B1C1;
(2)写出A1、B1、C1的坐标;
(3)求△A1B1C1的面积.
如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.
求证:(1)OC=OD,(2)OE是线段CD的垂直平分线.
已知,如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.