满分5 > 初中数学试题 >

(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.当点A位于什么...

(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.当点A位于什么上时,线段AC的长取得最大值,且最大值为多少(用含a,b的式子表示)

(2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.

①请找出图中与BE相等的线段,并说明理由;

②直接写出线段BE长的最大值.

(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.

 

 

(1)当点A位于CB的延长线上时,最大值为BC+AB=a+b,(2)①CD=BE,理由见解析;②最大值为BD+BC=AB+BC=5;(3)最大值为2+4,P(2﹣,). 【解析】 (1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果; (3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论. (1)∵点A为线段BC外一动点,且BC=a,AB=b, ∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b, (2)①CD=BE, 理由:∵△ABD与△ACE是等边三角形, ∴AD=AB,AC=AE,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC, 即∠CAD=∠EAB, 在△CAD与△EAB中, , ∴△CAD≌△EAB, ∴CD=BE; ②∵线段BE长的最大值=线段CD的最大值, 由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上, ∴最大值为BD+BC=AB+BC=5; (3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN, 则△APN是等腰直角三角形, ∴PN=PA=2,BN=AM, ∵A的坐标为(2,0),点B的坐标为(6,0), ∴OA=2,OB=5, ∴AB=4, ∴线段AM长的最大值=线段BN长的最大值, ∴当N在线段BA的延长线时,线段BN取得最大值, 最大值=AB+AN, ∵AN=AP=2, ∴最大值为2+4; 如图2,过P作PE⊥x轴于E, ∵△APN是等腰直角三角形, ∴PE=AE=, ∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣, ∴P(2﹣,).
复制答案
考点分析:
相关试题推荐

20184100时起,全国铁路开始实施新的列车运行图.调整后,重庆与郑州之间有了始发高铁,两地出行更加便利,想要来重庆旅游的郑州游客,可以下午喝碗胡辣汤,晚上品尝正宗重庆火锅,据重庆火车站介绍,此次列车运行图优化调整新增了郑州东站至重庆西站的调整动车组.试运行首日,商务座票价是二等座票价的2倍,商务座售出10张,二等座售出100张,商务座和二等座总售出不低于6万元.

(1)试运行期间,二等座票价至少多少元?

(2)现正式投入运行后,铁路部门将二等座票价在试运行首日最低票价的基础上上涨了a%(a为整数),商务座票价在试运行首日最低票价基础上提高了3a%,且正式运行首日二等座售出的数量比试运行首日减少了a张,商务座售出的数量减少为试运行首日的一半,正式运行首日商务座和二等座总销售额为55000元,求a的值.

 

查看答案

为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.

1)老师若从获奖的5名学生中选取一名作为班级的环保小卫士,则恰好是男生的概率为     

2)老师若从获奖的5名学生中任选两名作为班级的环保小卫士,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.

 

查看答案

如图,斜坡BE,坡顶B到水平地面的距离AB3米,坡底AE18米,在B处,E处分别测得CD顶部点D的仰角为,求CD的高度结果保留根号

 

查看答案

如图,在ABC中,AD平分∠BACBC于点D.点EF分别在边ABAC上,且BEAFFGAB交线段AD于点G,连接BGEF

1)求证:四边形BGFE是平行四边形;

2)若ABG∽△AGFAB10AG6,求线段BE的长.

 

查看答案

如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A、B两点,过点AACx轴,垂足为C,连接OA,已知OC=2,tanAOC=,B(m,﹣2)

(1)求一次函数和反比例函数的解析式.

(2)结合图象直接写出:当y1>y2时,x的取值范围.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.