如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.
(1)求证:四边形AFCD是菱形;
(2)当AC=4,BC=3时,求BF的长.
若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.
如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).
(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;
(2)分别写出A、B的对应点C、D的坐标.
如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.
解方程:2x2﹣2x﹣1=0.
如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ最小值是_____.