(2011•齐齐哈尔)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG.
(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.
(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.
如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.
(1)求证:AB为⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积.(结果保留π)
某商品的进价为每件40元,售价为每件50元,每个月可卖出200件.如每件商品的售价每上涨1元,则每月少卖5件.设每件商品的售价上涨x元,每个月销售利润为y元.
(1)求y与x的函数关系式;
(2)当每个月的销售利润为3000元时,为了多销售商品,每件商品的售价应上涨多少元?
(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A(﹣1,n),B(2,4)两点.
(1)利用图中条件,求两个函数的解析式;
(2)根据图象直接写出使y1<y2的x的取值范围.
为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,市实验学校利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级(6)班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)求该班的人数;
(2)请把折线统计图补充完整;
(3)小明和小丽参加志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.
四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,若AF=4,AB=7.
(1)求DE的长度;
(2)试猜想:直线BE与DF有何位置关系?并说明理由.