(背景介绍)勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.
(小试牛刀)把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四边形AECD= ,
则它们满足的关系式为 ,经化简,可得到勾股定理.
(知识运用)(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC=16千米,则两个村庄的距离为 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.
(知识迁移)借助上面的思考过程与几何模型,求代数式最小值(0<x<16)
在正方形ABCD中,E为BC的中点,F是CD上一点,且FC=试说明:AE⊥EF.
观察下列各式,发现规律:;;;
填空: ______ , ______ ;
计算写出计算过程:;
请用含自然数的代数式把你所发现的规律表示出来.
由于大风,山坡上的一颗树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一颗树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.
已知求下列各式的值:
(1)
(2)
如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.