如图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)写出图2的阴影部分的正方形的边长.
(2)用两种不同的方法求图中的阴影部分的面积.
(3)观察如图2,写出这三个代数式之间的等量关系.
(4)根据(3)题中的等量关系,解决问题:若求的值
下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.
【解析】
设x2﹣4x=y
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的( )
A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底_______.(填“彻底”或“不彻底”)
若不彻底,请直接写出因式分解的最后结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
如图,已知∠1=∠2,∠B=∠C.求证:(1)AB∥CD;(2) ∠AEC=∠3.
常德市为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.若王大爷家一月份用水16吨,需交水费49元,二月份用水20吨,需交水费63元.
(1)求每吨水的基础价和调节价;
(2)若王大爷家三月份交了77元的水费,请问他家用了多少吨水?
先化简再求值,其中.
在网格上把△ABC向上平移8个小格得到△,在作△关于直线MN的轴对称图形得到△,并标明和的位置.