满分5 > 初中数学试题 >

某市有7万名学生参加中考,要想了解这7万名学生的数学考试成绩,从中抽取了1000...

某市有7万名学生参加中考,要想了解这7万名学生的数学考试成绩,从中抽取了1000名考生的数学成绩进行分析,以下说法正确的是 (    )

A. 1000名考生是总体的一个样本 B. 每名考生是个体

C. 7万名考生是总体 D. 7万名考生的数学成绩是总体

 

D 【解析】 总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量. A. 这1000名考生的数学成绩是总体的一个样本,选项错误; B. 每名考生的数学成绩是个体,选项错误; C.7万名考生的数学成绩是总体,选项错误; D. 正确. 故选:D.
复制答案
考点分析:
相关试题推荐

阅读与计算:请阅读以下材料,并完成相应的任务.

斐波那契(11701250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.

斐波那契数列中的第n个数可以用表示(其中n1),这是用无理数表示有理数的一个范例.

任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.

 

查看答案

(本小题满分9分)

根据要求,解答下列问题.

(1)根据要求,解答下列问题.

方程x2-2x+1=0的解为________________________;

方程x23x+2=0的解为________________________;

方程x24x+3=0的解为________________________;

 ……  ……

(2)根据以上方程特征及其解的特征,请猜想:

方程x29x+8=0的解为________________________;

关于x的方程________________________的解为x1=1,x2=n.

(3)请用配方法解方程x29x+8=0,以验证猜想结论的正确性.

 

查看答案

合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在2030之间(包括2030),且四人间的数量是双人间的5.

(1)2015年学校寝室数为64,2017年建成后寝室数为121,20152017年的平均增长率;

(2)若建成后的寝室可供600人住宿,求单人间的数量;

(3)若该校今年建造三类不同的寝室的总数为180,则该校的寝室建成后最多可供多少师生住宿?

 

查看答案

已知关于x的一元二次方程x2-4x-m2=0.

(1)求证:该方程有两个不等的实根;

(2)若该方程的两个实数根x1,x2满足x1+2x2=9,求m的值.

 

查看答案

列方程解应用题:

某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.