某地区100个家庭收入按从高到低是5800,……,10000元各不相同,在输入计算时,把最大的数错误地输成100000元,则依据错误的数据算出的平均数比实际平均数多( )
A. 900元 B. 942元 C. 90000元 D. 9000元
甲、乙两班学生参加了同一次数学考试,班级的平均分和方差如下: 则成绩较为整齐的是( )
A. 甲班 B. 乙班 C. 两班一样 D. 无法确定
某市有7万名学生参加中考,要想了解这7万名学生的数学考试成绩,从中抽取了1000名考生的数学成绩进行分析,以下说法正确的是 ( )
A. 这1000名考生是总体的一个样本 B. 每名考生是个体
C. 7万名考生是总体 D. 7万名考生的数学成绩是总体
阅读与计算:请阅读以下材料,并完成相应的任务.
斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.
斐波那契数列中的第n个数可以用表示(其中n≥1),这是用无理数表示有理数的一个范例.
任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.
(本小题满分9分)
根据要求,解答下列问题.
(1)根据要求,解答下列问题.
①方程x2-2x+1=0的解为________________________;
②方程x2-3x+2=0的解为________________________;
③方程x2-4x+3=0的解为________________________;
…… ……
(2)根据以上方程特征及其解的特征,请猜想:
①方程x2-9x+8=0的解为________________________;
②关于x的方程________________________的解为x1=1,x2=n.
(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.
合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;
(2)若建成后的寝室可供600人住宿,求单人间的数量;
(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?