满分5 > 初中数学试题 >

综合与实践:制作无盖盒子 任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其四...

综合与实践:制作无盖盒子

任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其四角各剪去一个正方形,折成高为4cm,容积为的无盖长方体盒子纸板厚度忽略不计

请在图1的矩形纸板中画出示意图,用实线表示剪切线,虚线表示折痕.

请求出这块矩形纸板的长和宽.

任务二:图2是一个高为4cm的无盖的五棱柱盒子直棱柱,图3是其底面,在五边形ABCDE中,

试判断图3AEDE的数量关系,并加以证明.

2中的五棱柱盒子可按图4所示的示意图,将矩形纸板剪切折合而成,那么这个矩形纸板的长和宽至少各为多少cm?请直接写出结果图中实线表示剪切线,虚线表示折痕纸板厚度及剪切接缝处损耗忽略不计

 

任务一:(1)作图见试题解析;(2)30,15;任务二(1)AE=DE;(2),. 【解析】 试题任务一:(1)按要求画出示意图即可; (2)设矩形纸板的宽为xcm,则长为2xcm,根据题意列出方程,解出即可. 任务二:(1)AD=DE,延长EA、ED分别交直线BC于点M、N,先证明△MAB≌△NDC,得到AM=DN即可; (2)如图4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,连接AD,GF,过B,C分别作BM⊥AD于M,CN⊥AD于N,过E作EP⊥AD于P,则GF即为矩形纸板的长,MN=BC=12,AP=DP,得到∠BAM=∠CDN=60°,求出AM、DN、BM、CN的长,然后通过三角形相似即可得到结果. 试题解析:任务一:(1)如图1所示: (2)设矩形纸板的宽为xcm,则长为2xcm,由题意得:4(x﹣2×4)(2x﹣2×4)=616,解得:,(舍去),∴2x=2×15=30, 答:矩形纸板的长为30cm,宽为15cm; 任务二:(1)AE=DE,证明如下:延长EA,ED分别交直线BC于M,N,∵∠ABC=∠BCD=120°,∴∠ABM=∠DCN=60°,∵∠EAB=∠EDC=90°,∴∠M=∠N=30°,∴EM=EN,在△MAB与△NDC中,∵∠M=∠N,∠ABM=∠DCN,AB=DC,∴△MAB≌△NDC,∴AM=DN,∴EM﹣AM=EN﹣DN,∴AE=DE; (2)如图4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,连接AD,GF,过B,C分别作BM⊥AD于M,CN⊥AD于N,过E作EP⊥AD于P,则GF即为矩形纸板的长,MN=BC=12,AP=DP,∴∠BAM=∠CDN=60°,∵AB=CD=6,∴AM=DN=3,BM=CN=,∴AP=AD=(3+3+12)=9,∴AE=,PE=,∵AD∥GF,∴△EAD∽△EGF,∴,∴GF=,∴矩形纸板的长至少为,矩形纸板的宽至少为PE+BM++4==.  
复制答案
考点分析:
相关试题推荐

已知是等腰直角三角形,,过点B内作线段BDAC于点E,过点C

如图1所示,若,求ED

如图2所示,若线段BD平分,连接AD,求证:

如图3所示,连接AD,求证:

 

查看答案

(本题满分10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.

1)求每张门票原定的票价;

2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.

 

查看答案

6分)如图,△ABC三个顶点的坐标分别为A24),B11),C43).

1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;

2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2

3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).

 

查看答案

已知:关于x的方程x2+2mx+m2-1=0

(1)不解方程,判别方程根的情况;

(2)若方程有一个根为3,求m的值.

 

查看答案

某校九年级两个班,各选派10名学生参加学校举行的汉字听写大赛预赛.各参赛选手的成绩如图:

九(1)班:889192939393949898100

九(2)班:89939393959696989899

通过整理,得到数据分析表如下:

班级
 

最高分
 

平均分
 

中位数
 

众数
 

方差
 

九(1)班
 

100
 

m
 

93
 

93
 

12
 

九(2)班
 

99
 

95
 

n
 

93
 

84
 

 

 

1)直接写出表中mn的值;

2)依据数据分析表,有人说:最高分在(1)班,(1)班的成绩比(2)班好,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;

3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.