如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.
(1) 求证:AHAB=AC2;
(2) 若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AEAF=AC2;
(3) 若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断APAQ=AC2是否成立(不必证明).
甲、乙两同学开展“投球进筐”比赛,双方约定:① 比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;② 若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③ 计分规则如下:a. 得分为正数或0;b. 若8次都未投进,该局得分为0;c. 投球次数越多,得分越低;d. 6局比赛的总得分高者获胜 .
(1) 设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;
(2) 若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):
| 第一局 | 第二局 | 第三局 | 第四局 | 第五局 | 第六局 |
甲 | 5 | × | 4 | 8 | 1 | 3 |
乙 | 8 | 2 | 4 | 2 | 6 | × |
根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜.
如图,已知点M、N分别是△ABC的边BC、AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点,求证:P、C、Q三点在同一条直线上.
(1) 已知a=sin60°,b=cos45°,c=,d=,从a、b、c、d这4个数中任意选取3个数求和;
(2) 计算: .
已知n(n≥2)个点P1,P2,P3,…,Pn在同一平面内,且其中没有任何三点在同一直线上.设Sn表示过这n个点中的任意2个点所作的所有直线的条数,显然,S2=1,S3=3,S4=6,S5=10,…,由此推断,Sn=__.
如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=)