满分5 > 初中数学试题 >

已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点. (1)如图①,...

已知,在ABC中,∠A=90°,AB=AC,点DBC的中点.

(1)如图①,若点E、F分别为AB、AC上的点,且DEDF,求证:BE=AF;

(2)若点E、F分别为AB、CA延长线上的点,且DEDF,那么BE=AF吗?请利用图②说明理由.

 

(1)证明见解析;(2)BE=AF,证明见解析. 【解析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF; (2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF. 详(1)证明:连接AD,如图①所示. ∵∠A=90°,AB=AC, ∴△ABC为等腰直角三角形,∠EBD=45°. ∵点D为BC的中点, ∴AD=BC=BD,∠FAD=45°. ∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°, ∴∠BDE=∠ADF. 在△BDE和△ADF中, , ∴△BDE≌△ADF(ASA), ∴BE=AF; (2)BE=AF,证明如下: 连接AD,如图②所示. ∵∠ABD=∠BAD=45°, ∴∠EBD=∠FAD=135°. ∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°, ∴∠EDB=∠FDA. 在△EDB和△FDA中, , ∴△EDB≌△FDA(ASA), ∴BE=AF.
复制答案
考点分析:
相关试题推荐

如图,已知等腰三角形中,,点DE分别在边上,且,连接,交于点F.

(1)判断的数量关系,并说明理由;

(2)求证:过点AF的直线垂直平分线段.

 

查看答案

如图,在中,FEM的中点,.

(1)的周长;

(2),求的度数.

 

查看答案

作图题:如图所示是每一个小方格都是边长为1的正方形网格,

(1)利用网格线作图:

①在上找一点P,使点P的距离相等;

②在射线上找一点Q,使.

(2)(1)中连接,试说明是直角三角形.

 

查看答案

如图,花果山上有两只猴子在一棵树上的点B处,且,它们都要到A处吃东西,其中一只猴子甲沿树爬下走到离树10m处的池塘A处,另一只猴子乙先爬到树顶D处后再沿缆绳线段滑到A.已知两只猴子所经过的路程相等,设xm.

(1)请用含有x的整式表示线段的长为        m

(2)求这棵树高有多少米?

 

查看答案

如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与成轴对称图形.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.