2019的相反数是
A. 2019 B. C. D.
问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.
(1)求A,B两点的坐标;
(2)求△BOC的面积;
(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.
①当OA=3MN时,求t的值;
②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.
某数码专营店销售甲、乙两种品牌智能手机,这两种手机的进价和售价如下表所示:
| 甲 | 乙 |
进价(元/部) | 4300 | 3600 |
售价(元/部) | 4800 | 4200 |
(1)该店销售记录显示.三月份销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,求该店三月份售出甲种手机和乙种手机各多少部?
(2)根据市场调研,该店四月份计划购进这两种手机共20部,要求购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,请通过计算设计所有可能的进货方案.
(3)在(2)的条件下,该店打算将四月份按计划购进的20部手机全部售出后,所获得利润的30%用于购买A,B两款教学仪器捐赠给某希望小学.已知购买A仪器每台300元,购买B仪器每台570元,且所捐的钱恰好用完,试问该店捐赠A,B两款仪器一共多少台?(直接写出所有可能的结果即可)
如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为9cm,则FG=_____cm.
如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。