已知,把和按图1摆放,点C与E点重合,点B、C、E、F始终在同一条直线上,,,,,,如图2,从图1的位置出发,以每秒1个单位的速度沿CB方向匀速移动,同时,点P从A出发,沿AB以每秒1个单位向点B匀速移动,AC与的直角边相交于Q,当P到达终点B时,同时停止运动连接PQ,设移动的时间为解答下列问题:
在平移的过程中,当点D在的AC边上时,求AB和t的值;
在移动的过程中,是否存在为等腰三角形?若存在,求出t的值;若不存在,说明理由.
某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.
(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?
(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).
对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”,记为n= 其中,且x、y为整数
请任意写出两个“极数”;
猜想任意一个“极数”是否是99的倍数,请说明理由;
如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记写出三个满足是完全平方数的只需直接写出结果.
如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
(2)求∠ABD的度数.
今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.
(1)求B点到直线CA的距离;
(2)执法船从A到D航行了多少海里?(结果保留根号)
已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1,x2是原方程的两根,且|x1-x2|=2,求m的值.