满分5 > 初中数学试题 >

的平方根是( ) A. 4 B. ±2 C. ±4 D. 4

的平方根是(  )

A. 4 B. ±2 C. ±4 D. 4

 

B 【解析】 先对进行化简,可得,求的平方根就是求4的平方根,只要求出4的平方根即可,本题得以解决. 【解析】 ∵, ∴的平方根是±2, 故选:B.
复制答案
考点分析:
相关试题推荐

如图,已知二次函数yax2+bx+ca≠0)的对称轴为直线x=﹣1,图象经过B(﹣30)、C03)两点,且与x轴交于点A

1)求二次函数yax2+bx+ca≠0)的表达式;

2)在抛物线的对称轴上找一点M,使ACM周长最短,求出点M的坐标;

3)若点P为抛物线对称轴上的一个动点,直接写出使BPC为直角三角形时点P的坐标.

 

查看答案

(探索发现)

如图1,是一张直角三角形纸片,,小明想从中剪出一个以为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DEEF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为______

(拓展应用)

如图2,在中,BC边上的高,矩形PQMN的顶点PN分别在边ABAC上,顶点QM在边BC上,求出矩形PQMN面积的最大值用含ah的代数式表示

(灵活应用)

如图3,有一块缺角矩形”ABCDE,小明从中剪出了一个面积最大的矩形为所剪出矩形的内角,直接写出该矩形的面积.

 

查看答案

如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)

(1)是否存在某一时刻t,使得PQBD?若存在,求出t值;若不存在,说明理由

(2)设PQC的面积为s(cm2),求st之间的函数关系式;

(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使SQCM:SPCM=3:5?若存在,求出t值;若不存在,说明理由.

 

查看答案

某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.

1)当售价为22万元/辆时,求平均每周的销售利润.

2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.

 

查看答案

如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C. 

(1)求一次函数与反比例函数的解析式; 

(2)求△ABC的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.