满分5 > 初中数学试题 >

探究与发现: 探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那...

探究与发现:

探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?

已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.

探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?

已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.

探究三:若将△ADC改为任意四边形ABCD呢?

已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.

 

探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+∠A;探究三:∠P=(∠A+∠B). 【解析】 探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解; 探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解; 探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可. 【解析】 探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC, ∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A; 探究二:∵DP、CP分别平分∠ADC和∠ACD, ∴∠PDC=∠ADC,∠PCD=∠ACD, ∴∠P=180°﹣∠PDC﹣∠PCD =180°﹣∠ADC﹣∠ACD =180°﹣(∠ADC+∠ACD) =180°﹣(180°﹣∠A) =90°+∠A; 探究三:∵DP、CP分别平分∠ADC和∠BCD, ∴∠PDC=∠ADC,∠PCD=∠BCD, ∴∠P=180°﹣∠PDC﹣∠PCD =180°﹣∠ADC﹣∠BCD =180°﹣(∠ADC+∠BCD) =180°﹣(360°﹣∠A﹣∠B) =(∠A+∠B). 故答案为:探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+∠A;探究三:∠P=(∠A+∠B).
复制答案
考点分析:
相关试题推荐

列方程解应用题:

老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少。

小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树。他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约_______千米。

然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米。小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:

考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值。

 

查看答案

如图,在平面直角坐标系xOy中,

在图纸作出关于x轴的对称图形

写出点的坐标直接写答案

__________________.

的面积.

 

查看答案

因式分【解析】

先化简,再求值:,其中

 

查看答案

关于x的方程:

时,求这个方程的解;

若这个方程无解且,求a的值.

 

查看答案

如图,∠AOB的边OBx轴正半轴重合,点POA上的一动点,点N(6,0)是OB上的一定点,点MON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.