甲、乙两人从学校出发,沿相同的线路跑向公园.甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度继续跑向公园.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)之间函数关系的图象,根据题意填空:
(1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒;
(2)乙最早出发时跑步的速度为 米/秒,乙在途中等候甲的时间为 秒;
(3)乙出发 秒后与甲第一次相遇.
如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+m交折线OAB于点E.
(1)请写出m的取值范围 ;
(2)记△ODE的面积为S,求S与m的函数关系式.
如图,两直线l1:y=kx﹣2b+1和l2:y=(1﹣k)x+b﹣1交于x轴上一点A,与y轴分别交于点B、C,若A的横坐标为2.
(1)求这两条直线的解析式;
(2)求△ABC的面积.
在直角坐标系中,有四个点A(﹣8,3)、B(﹣4,5)、C(0,n)、D(m,0),当四边形ABCD的周长最短时,求的值.
解方程组:
(1);
(2).
计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1.