若将二次函数y=x2﹣1的图象向上平移2个单位长度,再向右平移3个单位长度,则平移后的二次函数的顶点坐标为( )
A. (﹣3,1) B. (3,1)
C. (2,2) D. (﹣3,﹣3)
若⊙O的直径为12,点P在⊙O外,则OP的长可能是( )
A. 4 B. 5 C. 6 D. 7
用配方法解方程x2﹣6x+7=0,将其化为(x+a)2=b的形式,正确的是( )
A. (x+3)2=2 B. (x﹣3)2=16
C. (x﹣6)2=2 D. (x﹣3)2=2
一组数据:1,5,﹣2,0,﹣1的极差是( )
A. 5 B. 6 C. 7 D. 8
阅读理【解析】
如图1,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图1所示的“完美筝形”纸片ABCD先折叠成如图2所示形状,再展开得到图3,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.
简单应用:
(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是 ;
(2)当图3中的∠BCD=120°时,∠AEB′= ;
拓展提升:
(3)当图2中的四边形AECF为菱形时,对应图3中的四边形CD′OB′是否是“完美筝形”?请说明理由.
甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学顺利跑完.设比赛中同学距出发点的距离用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图像表示如下:
(1)这是一次 米的背夹球比赛;
(2)线段 表示甲组两位同学在比赛中途掉球,耽误了 秒;
(3)甲组同学到达终点用了 秒,乙组同学到达终点用了 秒,获胜的是 组同学;
(4)请直接写出C点坐标,并说明点C的实际意义.