满分5 > 初中数学试题 >

问题提出: 有n个环环相扣的圆环形成一串线型链条,当只断开其中的k(k<n)个环...

问题提出:

n个环环相扣的圆环形成一串线型链条,当只断开其中的kkn)个环,要求第一次取走一个环,以后每次都只能比前一次多得一个环,则最多能得到的环数n是多少呢?

问题探究:

    为了找出nk之间的关系,我们运用一般问题特殊化的方法,从特殊到一般,归纳出解决问题的方法.

探究一:k=1,即断开链条其中的1个环,最多能得到几个环呢?

n=1,2,3时,断开任何一个环,都能满足要求,分次取走;

n=4时,断开第二个环,如图①,第一次取走1环;第二次退回1环换取2环,得2个环;第三次再取回1环,得3个环;第四次再取另1环,得4个环,按要求分4次取走.

n=567时,如图②,图③,图④方式断开,可以用类似上面的方法,按要求分5,6,7次取走.

n=8时,如图⑤,无论断开哪个环,都不可能按要求分次取走.

所以,当断开1个环时,从得到更多环数的角度考虑,把链条分成3部分,分别是1环、2环和4环,最多能得到7个环.

即当k=1时,最多能得到的环数n=1+2+4=1+2×3=1+2×22-1=7.

探究二:k=2,即断开链条其中的2个环,最多能得到几个环呢?

从得到更多环数的角度考虑,按图⑥方式断开,把链条分成5部分,按照类似探究一的方法,按要求分1,2,…23次取走.

所以,当断开2个环时,把链条分成5部分,分别是1环、1环、3环、6环、12环,最多能得到23个环.

即当k=2时,最多能得到的环数n=1+1+3+6+12=2+3×7=2+3×23-1=23.

探究三:k=3,即断开链条其中的3个环,最多能得到几个环呢?

从得到更多环数的角度考虑,按图⑦方式断开,把链条分成7部分,按照类似前面探究的方法,按要求分1,2,…63次取走.

所以,当断开3个环时,从得到更多环数的角度考虑,把链条分成7部分,分别是1环、1环、1环、4环、8环、16环、32环,最多能得到63个环.

即当k=3时,最多能得到的环数n=1+1+1+4+8+16+32=3+4×15=3+4×24-1=63.

探究四:k=4,即断开链条其中的4个环,最多能得到几个环呢?

按照类似前面探究的方法,当断开4个环时,从得到更多环数的角度考虑,把链条分成     部分,分别为       ,最多能得到的环数n=       .请画出如图⑥的示意图.

模型建立:

n个环环相扣的圆环形成一串线型链条,断开其中的kkn)个环,从得到更多环数的角度考虑,把链条分成       部分,

分别是:111……1k+1      ……      ,最多能得到的环数n =            

实际应用:

一天一位财主对雇工说:你给我做两年的工,我每天付给你一个银环.不过,我用一串环环相扣的线型银链付你工钱,但你最多只能断开银链中的6个环.如果你无法做到每天取走一个环,那么你就得不到这两年的工钱,如果银链还有剩余,全部归你!你愿意吗?

聪明的你是否可以运用本题的方法通过计算帮助雇工解决这个难题,雇工最多能得到总环数为多少环的银链?

 

探究四:详见解析;模型建立:详见解析;实际应用:雇工最多能得到总环数为895环的银链 【解析】 探究四:根据题意画出图形分析,由此得出答案; 模型建立:由前面当n=1,2,3,4分析可得,从而得出其中的规律; 实际应用:当k=6代入n = k+(k+1)×(2k+1-1)计算即可. 探究四:k=4,即断开链条其中的4个环,最多能得到几个环呢? 按照类似前面探究的方法,当断开4个环时,从得到更多环数的角度考虑,把链条分成 九 部分,分别为 1,1,1,1,5,10,20,40,80 ,最多能得到的环数n= 1+1+1+1+5+10+20+40+80=4+5×(25-1)=159 . 示意图. 模型建立:有n个环环相扣的圆环形成一串线型链条,断开其中的k(k<n)个环,从得到更多环数的角度考虑,把链条分成 2k+1 部分, 分别是:1、1、1……1、k+1、 2(k+1) 、……、 2k(k+1) ,最多能得到的环数n = k+(k+1)×(2k+1-1) 个. 实际应用: 6+7×(27-1)=895. 因为895大于两年的天数, 所以愿意. 答:雇工最多能得到总环数为895环的银链.
复制答案
考点分析:
相关试题推荐

为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.莫小贝按照政策投资销售本市生产的一种品牌衬衫.已知这种品牌衬衫的成本价为每件120元,出厂价为每件165元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣3x+900

1)莫小贝在开始创业的第1个月将销售单价定为180元,那么政府这个月为他承担的总差价为多少元?

2)设莫小贝获得的利润为w(元),当销售单价为多少元时,每月可获得最大利润?

3)物价部门规定,这种品牌衬衫的销售单价不得高于250元,如果莫小贝想要每月获得的利润不低于19500元,那么政府每个月为他承担的总差价最少为多少元?

 

查看答案

如图,ABCD的对角线ACBD相交于点OOEOF

1)求证:△BOE≌△DOF

2)若BDEF,连接DEBF,判断四边形EBFD的形状,并说明理由.

 

查看答案

为了预防甲型H1N1,某校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量ymg)与时间x(min)成正比例,药物燃烧后,yx成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:

(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后yx的函数关系式呢?

(2)研究表明,当空气中每立方米的含药量低于1.6mg时,生方可进教室,那么从消毒开始,至少需要几分钟后,生才能进入教室?

(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?

 

查看答案

某中学举行“校园•朗读者”朗诵大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写表格;

 

平均分(分)

中位数(分)

众数(分)

初中部

     

85

     

高中部

85

     

100

 

2)结合两队成绩的平均数和中位数,     队的决赛成绩较好;

3)已知高中代表队决赛成绩的方差为160,计算初中代表队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.(方差公式:S2[x12+x22++xn2]

 

查看答案

如图,两幢建筑物ABCDABBDCDBDAB=15mCD=20mABCD之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点BED在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)(参考数据:sin42°=0.67cos42°=0.74tan42°=0.90

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.