若a2=4,b2=9,且ab<0,则a﹣b的值为( )
A. ﹣2 B. ±5 C. 5 D. ﹣5
若直线l外一点P与直线l上三点的连线段长分别为2cm,3cm,4cm,则点P到直线l的距离是( )
A. 2cm B. 不超过2cm C. 3cm D. 大于4cm
π、,﹣,,3.1416,中,无理数的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,点D、E分别为三角形ABC边BC、AC上一点,作射线DE,则下列说法错误的是( )
A. ∠1与∠3是对顶角 B. ∠2与∠A是同位角
C. ∠2与∠C是同旁内角 D. ∠1与∠4是内错角
已知:如图①,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<4),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
问题提出:
有n个环环相扣的圆环形成一串线型链条,当只断开其中的k(k<n)个环,要求第一次取走一个环,以后每次都只能比前一次多得一个环,则最多能得到的环数n是多少呢?
问题探究:
为了找出n与k之间的关系,我们运用一般问题特殊化的方法,从特殊到一般,归纳出解决问题的方法.
探究一:k=1,即断开链条其中的1个环,最多能得到几个环呢?
当n=1,2,3时,断开任何一个环,都能满足要求,分次取走;
当n=4时,断开第二个环,如图①,第一次取走1环;第二次退回1环换取2环,得2个环;第三次再取回1环,得3个环;第四次再取另1环,得4个环,按要求分4次取走.
当n=5,6,7时,如图②,图③,图④方式断开,可以用类似上面的方法,按要求分5,6,7次取走.
当n=8时,如图⑤,无论断开哪个环,都不可能按要求分次取走.
所以,当断开1个环时,从得到更多环数的角度考虑,把链条分成3部分,分别是1环、2环和4环,最多能得到7个环.
即当k=1时,最多能得到的环数n=1+2+4=1+2×3=1+2×(22-1)=7.
探究二:k=2,即断开链条其中的2个环,最多能得到几个环呢?
从得到更多环数的角度考虑,按图⑥方式断开,把链条分成5部分,按照类似探究一的方法,按要求分1,2,…23次取走.
所以,当断开2个环时,把链条分成5部分,分别是1环、1环、3环、6环、12环,最多能得到23个环.
即当k=2时,最多能得到的环数n=1+1+3+6+12=2+3×7=2+3×(23-1)=23.
探究三:k=3,即断开链条其中的3个环,最多能得到几个环呢?
从得到更多环数的角度考虑,按图⑦方式断开,把链条分成7部分,按照类似前面探究的方法,按要求分1,2,…63次取走.
所以,当断开3个环时,从得到更多环数的角度考虑,把链条分成7部分,分别是1环、1环、1环、4环、8环、16环、32环,最多能得到63个环.
即当k=3时,最多能得到的环数n=1+1+1+4+8+16+32=3+4×15=3+4×(24-1)=63.
探究四:k=4,即断开链条其中的4个环,最多能得到几个环呢?
按照类似前面探究的方法,当断开4个环时,从得到更多环数的角度考虑,把链条分成 部分,分别为 ,最多能得到的环数n= .请画出如图⑥的示意图.
模型建立:
有n个环环相扣的圆环形成一串线型链条,断开其中的k(k<n)个环,从得到更多环数的角度考虑,把链条分成 部分,
分别是:1、1、1……1、k+1、 、……、 ,最多能得到的环数n = .
实际应用:
一天一位财主对雇工说:“你给我做两年的工,我每天付给你一个银环.不过,我用一串环环相扣的线型银链付你工钱,但你最多只能断开银链中的6个环.如果你无法做到每天取走一个环,那么你就得不到这两年的工钱,如果银链还有剩余,全部归你!你愿意吗?”
聪明的你是否可以运用本题的方法通过计算帮助雇工解决这个难题,雇工最多能得到总环数为多少环的银链?