满分5 > 初中数学试题 >

如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=...

如图,已知正方形ABCD的边长为3EF分别是ABBC边上的点,且∠EDF45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM

1)求证:EFMF;(2)当AE1时,求EF的长.

 

(1)见解析;(2). 【解析】 (1)由旋转的性质可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF; (2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长. (1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM, ∴DE=DM,∠EDM=90°, ∵∠EDF=45°,∴∠FDM=45°, ∴∠EDF=∠FDM. 又∵DF=DF,DE=DM, ∴△DEF≌△DMF, ∴EF=MF; (2)【解析】 设EF=MF=x, ∵AE=CM=1,AB=BC=3, ∴EB=AB﹣AE=3﹣1=2,BM=BC+CM=3+1=4, ∴BF=BM﹣MF=4﹣x. 在Rt△EBF中,由勾股定理得EB2+BF2=EF2, 即22+(4﹣x)2=x2, 解得:x=, 则EF的长为.
复制答案
考点分析:
相关试题推荐

ABC是等边三角形,点D是射线BC上的一个动点(点D不与点BC重合),△ADE是以AD为边的等边三角形,过点EBC的平行线,分别交射线ABAC于点FG,连接BE

1)如图(a)所示,当点D在线段BC上时.

①求证:△AEB≌△ADC

②探究四边形BCGE是怎样特殊的四边形?并说明理由;

2)如图(b)所示,当点DBC的延长线上时,直接写出(1)中的两个结论是否成立;

3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.

 

查看答案

如图所示,长方形纸片ABCD的长AD9cm,宽AB3cm,将其折叠,使点D与点B重合.

求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.

 

查看答案

已知,如图,正方形ABCD的边长是8MDC上,且DM2NAC边上的一动点,则DN+MN的最小值是_____

 

查看答案

在直角坐标系中,O为原点,已知A11),在坐标轴上确定点P,使△AOP为等腰三角形,则符合条件的点P_____个.

 

查看答案

菱形ABCD的周长为52cm,一条对角线的长为24cm,则该菱形的面积为_____cm2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.