下列调查适合作普查的是( )
A.了解“嫦娥三号”卫星零部件的状况
B.了解在校大学生的主要娱乐方式
C.日光灯管厂要检测一批灯管的使用寿命
D.了解某市居民对废电池的处理情况
若式子在实数范围内有意义,则x的取值范围是( )
A. x≠1 B. x>1 C. x≥1 D. x≤1
下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
如图1,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,且OC=OA.
(1)求抛物线解析式;
(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值;
(3)如图2,D(0,﹣2),连接BD,将△OBD绕平面内的某点(记为P)逆时针旋转180°得到△O′B′D′,O、B、D的对应点分别为O′、B′、D′.若点B′、D′两点恰好落在抛物线上,求旋转中心点P的坐标.
如图1,已知△ABC中,∠ACB=90°,CA=CB,点D,E分别在CB,CA上,且CD=CE,连AD,BE,F为AD的中点,连CF.
(1)求证:CF=BE,且CF⊥BE;
(2)将△CDE绕点C顺时针旋转一个锐角(如图2),其它条件不变,此时(1)中的结论是否仍成立?并证明你的结论.
如图,⊙O是△ABC的外接圆,AB为直径,D是⊙O上一点,且弧CB=弧CD,CE⊥DA交DA的延长线于点E.
(1)求证:∠CAB=∠CAE;
(2)求证:CE是⊙O的切线;
(3)若AE=1,BD=4,求⊙O的半径长.