如图,在矩形ABCD中,对角线AC、BD相交于点O,且∠AOD=120°,AC=6,则图中长度为3的线段有( )
A. 2条 B. 4条 C. 5条 D. 6条
用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是( )
A. (x+4)2=11 B. (x+4)2=21
C. (x﹣8)2=11 D. (x﹣4)2=11
方程x2=4x的根是( )
A. x=4 B. x=0 C. x1=0,x2=4 D. x1=0,x2=﹣4
如图1,在平面直角坐标系中,直线分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形(有一个角是直角的平行四边形).
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作PHOA,垂足为H,连接NP.设点P的运动时间为t秒.
①若△NPH的面积为1,求t的值;
②点Q是点B关于点A的对称点,问BPPHHQ是否有最小值,如果有,直接写出相应的点P的坐标;如果没有,请说明理由.
阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:
设(其中、、、均为整数),则有.
,.这样小明就找到了一种把类似的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当、、、均为正整数时,若,用含、的式子分别表示、,得: , ;
(2)利用所探索的结论,找一组正整数、、、填空: ;
(3)若,且、、均为正整数,求的值?
如图1,▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.
(1)求证:四边形EBFD是平行四边形;
(2)如图2,小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图3)中补全他的证明思路,再在答题纸上写出规范的证明过程.