已知抛物线y=ax2﹣bx+3经过点A(1,2),B(2,3).
(1)求此抛物线的函数解析式.
(2)判断点B(﹣1,﹣4)是否在此抛物线上.
猜想归纳:为了建设经济型节约型社会,“先锋”材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(已知:AC=40,BC=30,∠C=90°)
(1)如图①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;
(2)如图②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;
(3)如图③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;
(4)猜想:如图④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?
求证:相似三角形对应高的比等于相似比.(请根据题意画出图形,写出已知,求证并证明)
如图,已知一次函数与反比例函数的图象交于,两点.
(1)求一次函数与反比例函数的解析式;
(2) 请根据图象直接写出时的取值范围.
如图,在正方形ABCD中,点E是AD中点,连接BE,AC,交于点O.求的值.
解方程:2x2﹣4x﹣1=0(用配方法)