如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为( )
A. 7 B. C. 6 D. 5
下列运算结果正确的是
A. B. C. D.
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.
(1)求∠DGE的度数;
(2)若=,求的值;
(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)
如图,已知△ABC内接于⊙O,直径AD⊥BC于E,点F是OE的中点,且BD∥CF.
(1)若BD=3,求BC的长.
(2)若BD平分∠CBP,求证:AB•BD=BP•AF.
已知函数(为常数)
(1)该函数的图像与轴公共点的个数是( )
A.0 B.1 C.2 D.1或2
(2)求证:不论为何值,该函数的图像的顶点都在函数的图像上.
(3)当时,求该函数的图像的顶点纵坐标的取值范围.