(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
已知Rt△ABC,∠C=90°,CD⊥AB于D.
(1)点E在CA延长线上,点F在BC延长线上,连接DE,DF,
①如图1,∠B=45°,AC=AE,BC=CF,请补全图形,并直接写出DE和DF的位置关系与数量关系;
②如图2,∠B=30°,若DE和DF的位置关系满足①中的结论,请补全图形,判断AE和CF的数量关系,并证明;
(2)点E在射线CA上,点F在射线BC上,连接DE,DF,BE,EF,如果DE⊥DF,EC=8,EB=17,EF=10,请直接写出AC的长.
水果中的牛油果和桔子的维生素含量很高,因此深受人们喜爱,“农夫果园”水果商家11月份购进了第一批牛油果和桔子共300千克,已知牛油果进价每千克15元,售价每千克30元,桔子进价每千克5元,售价每千克10元.
(1)若这批牛油果和桔子全部销售完获利不低于3500元,则牛油果至少购进多少千克?
(2)第一批牛油果和桔子很快售完,于是商家决定购进第二批牛油果和桔子,牛油果和桔子的进价不变,牛油果售价比第一批上涨a%(其中a为正整数),桔子售价比第一批上涨2a%;销量与(1)中获得最低利润时的销量相比,牛油果的销量下降a%,桔子的销量保持不变,结果第二批中已经卖掉的牛油果和桔子的销售总额比(1)中第一批牛油果和桔子销售完后对应最低销售总额增加了2%,求正整数a的值.
如图1所示,点P是线段AB的中点,且AB=12,现分别以AP,BP为边,在AB的同侧作等边△MAP和△NBP,连结MN。
(1)请只用不含刻度的直尺在图1中找到△MNP外接圆的圆心O,并保留作图痕迹;
(2)若将“点P是线段AB的中点”改成“点P是线段AB上异于端点的任意一点”,其余条件不变(如图2),请用文字写出△MNP外接圆圆心O的位置,并求出该圆半径的最小值.
某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)
一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.
(1)用画树状图或列表等方法列出所有可能出现的结果;
(2)求点A落在第四象限的概率.