下列调查中,适合普查的是( ).
A. 中学生最喜欢的电视节目
B. 某张试卷上的印刷错误
C. 质检部门对各厂家生产的电池使用寿命的调查
D. 中学生上网情况
如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.
(1)证明:ABCD=PBPD.
(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.
(3)用以上方法解决下列问题:已知抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.
为了实现省城合肥跨越发展,近两年我市开始全面实施“畅通一环”工程,如图为一环路的一座下穿路拱桥,它轮廓是抛物线,桥的跨度AB=16米,拱高为6米.
(1)请以A点为坐标原点,AB所在直线为x轴建立平面直角坐标系,将抛物线放在直角坐标系中,求出抛物线的解析式;
(2)若桥拱下是双向行车道,其中一条行车道能否并排行驶宽3米,高2米的两辆汽车(汽车间隔不小于1米)说明理由
如图,△ABC中,AB=10cm,BC=20cm,点P从A开始沿AB边向B点以1cm/s的速度移动,到达点B时停止.点Q从点B开始沿BC边向C点以2cm/s的速度移动,到达点C时停止.如果P、Q分别从A、B同时出发,经几秒种△PBQ与△ABC相似?
已知:在△ABC中,BC=80cm,边BC上的高AD=60cm,在这个三角形内有一个内接矩形,矩形的一边在BC上,另两个顶点分别在边AB,AC上,问当这个矩形面积最大时,它的边长各为多少?(请画出图形,然后解答.)
如图,一次函数y=ax+b与反比例函数(x>0)的图像交于点A(2,5)和点B(m,1).
(1)确定这两个函数的表达式;
(2)求出△OAB的面积;
(3)结合图像,直接写出不等式的解集.