满分5 > 初中数学试题 >

如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于...

如图1,在ABCD中,DHAB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.

(1)如图2,作FGAD于点G,交DH于点M,将DGM沿DC方向平移,得到CG′M′,连接M′B.

①求四边形BHMM′的面积;

②直线EF上有一动点N,求DNM周长的最小值.

(2)如图3,延长CBEF于点Q,过点QQKAB,过CD边上的动点PPKEF,并与QK交于点K,将PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.

 

(1)①四边形BHMM′的面积为7.5;②△DNM周长的最小值为9;(2)CP的长为或. 【解析】(1)①根据相似三角形的判定和性质以及平移的性质进行解答即可; ②连接CM交直线EF于点N,连接DN,利用勾股定理解答即可; (2)分点P在线段CE上和点P在线段ED上两种情况进行解答. (1)①在▱ABCD中,AB=6,直线EF垂直平分CD, ∴DE=FH=3, 又BF:FA=1:5, ∴AH=2, ∵Rt△AHD∽Rt△MHF, ∴, 即, ∴HM=1.5, 根据平移的性质,MM'=CD=6,连接BM,如图1, 四边形BHMM′的面积==7.5; ②连接CM交直线EF于点N,连接DN,如图2, ∵直线EF垂直平分CD, ∴CN=DN, ∵MH=1.5, ∴DM=2.5, 在Rt△CDM中,MC2=DC2+DM2, ∴MC2=62+(2.5)2, 即MC=6.5, ∵MN+DN=MN+CN=MC, ∴△DNM周长的最小值为9; (2)∵BF∥CE, ∴, ∴QF=2, ∴PK=PK'=6, 过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3, 当点P在线段CE上时, 在Rt△PK'E'中, PE'2=PK'2﹣E'K'2, ∴PE′=2, ∵Rt△PE'K'∽Rt△K'F'Q, ∴, 即, 解得:QF′=, ∴PE=PE'﹣EE'=, ∴CP=, 同理可得,当点P在线段DE上时,CP′=,,如图4, 综上所述,CP的长为或.
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系中,直线yx+2x轴、y轴分别交于AB两点,以AB为边在第二象限内作正方形ABCD

(1)求点AB的坐标,并求边AB的长;

(2)求点C和点D的坐标;

(3)x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.

 

查看答案

某风景区改建中,需测量湖两岸游船码头AB间的距离,于是工作人员在岸边AB的垂线AF上取两点ED,使EDAE.再过D点作出AF的垂线OD,并在OD上找一点C,使BEC在同一直线上,这时测得CD长就是AB的距离.请说明理由.

 

查看答案

济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用ABCD表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.

请根据以上信息,回答下列问题:

l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);

2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______

3)请估计全校共征集作品的件数.

4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.

 

查看答案

已知:(x1)(x+3)=ax2+bx+c,求代数式9a3b+c的值.

 

查看答案

如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:;按照此规律继续下去,则点O2018的坐标为_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.