满分5 > 初中数学试题 >

如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动...

如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E

1)求∠BAC的度数;

2)当点DAB上方,且CDBP时,求证:PCAC

3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BDDE,直接写出BDE的面积.

 

(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120° ②36或. 【解析】 试题(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°; (2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解; (3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD •PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解. (1)【解析】 (1)连接BC, ∵AB是直径, ∴∠ACB=90°. ∴△ABC是等腰直角三角形, ∴∠BAC=∠CBA=45°; (2)【解析】 ∵,∴∠CDB=∠CDP=45°,CB= CA, ∴CD平分∠BDP 又∵CD⊥BP,∴BE=EP, 即CD是PB的中垂线, ∴CP=CB= CA, (3)① (Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°; (Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°; (Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°; (Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120° ②(Ⅰ)如图6, , . (Ⅱ)如图7, , , . , . , , , . 设BD=9k,PD=2k, , , , .
复制答案
考点分析:
相关试题推荐

已知如图 1,在中,,点上,,点的中点.

(1)写出线段与线段的关系并证明;

(2)如图,将绕点逆时针旋转,其它条件不变,线段与线段的关系是否变化,写出你的结论并证明;

(3) 绕点逆时针旋转一周,如果,直接写出线段的范围.

 

查看答案

如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.

 

查看答案

某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

(1)在这次调查中,喜欢篮球项目的同学有____人,在扇形统计图中,乒乓球的百分比为_____%,如果学校有800名学生,估计全校学生中有____人喜欢篮球项目.

(2)请将条形统计图补充完整.

(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.

 

查看答案

为建设秀美幸福之市,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.

1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?

2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?

 

查看答案

有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB60cmBC80cm,∠A120°,∠B60°,∠C150°,你能设计一个方案,根据测得的数据求出AD的长吗?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.