满分5 > 初中数学试题 >

△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分...

△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.

(1)求证:

(2)设EF=x,EH=y,写出y与x之间的函数表达式;

(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.

 

(1)见解析;(2)y=8﹣x(0<x<12);(3)S矩形EFGH=﹣(x﹣6)2+24,Smax=24. 【解析】 (1)先判断出AM是△AEF的高,再判断出△AEF∽△ABC,即可得出结论;(2)先判断出四边形EMDG是矩形,得出DM=EH,进而表示出AM=8﹣y,借助(1)的结论即可得出结论;(3)由矩形的面积公式得出函数关系式,即可得出结论. 【解析】 (1)∵四边形EFGH是矩形, ∴EF∥BC, ∵AD是△ABC的高, ∴AD⊥BC, ∴AM⊥EF, ∵EF∥BC, ∴△AEF∽△ABC, ∴(相似三角形的对应边上高的比等于相似比); (2)∵四边形EFGH是矩形, ∴∠FEH=∠EHG=90°, ∵AD⊥BC, ∴∠HDM=90°=∠FEH=∠EHG, ∴四边形EMDH是矩形, ∴DM=EH, ∵EF=x,EH=y,AD=8, ∴AM=AD﹣DM=AD﹣EH=8﹣y, 由(1)知,, ∴ , ∴y=8﹣x(0<x<12); (3)由(2)知,y=8﹣x, ∴S=S矩形EFGH=xy=x(8﹣x)=﹣(x﹣6)2+24, ∵a=﹣<0, ∴当x=6时,Smax=24.
复制答案
考点分析:
相关试题推荐

矩形AOBC中,OB8OA4.分别以OBOA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.FBC边上一个动点(不与BC重合),过点F的反比例函数yk0)的图象与边AC交于点E

1)当点F运动到边BC的中点时,求点E的坐标;

2)连接EFAB,求证:EFAB

3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.

 

查看答案

如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙OEDBE延长线上一点,且∠DAE=∠FAE

1)求证:AD为⊙O切线;

2)若sinBAC,求tanAFO的值.

 

查看答案

一个进行数值转换的运行程序如图所示,从输入实数x结果是否大于0”称为一次操作1)判断:(正确的打“√”,错误的打“×”

①当输入x3后,程序操作仅进行一次就停止.     

②当输入x为负数时,无论x取何负数,输出的结果总比输入数大.     

2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x的值;若不存在,请说明理由.

 

查看答案

某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:

月均用水量xt

频数(户)

频率

0x≤5

6

0.12

5x≤10

12

0.24

10x≤15

m

0.32

15x≤20

10

n

20x≤25

4

0.08

25x≤30

2

0.04

 

1)本次调查采用的调杳方式是     (填普査抽样调查),样本容量是     

2)补全频数分布直方图:

3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15x≤20”的圆心角度数是     

4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?

 

查看答案

如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.

求证:FC∥AB.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.