满分5 > 初中数学试题 >

如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边...

如图,RtABC中,∠ABC90°,以AB为直径的⊙OAC边于点DE是边BC的中点,连接DEOD

1)求证:直线DE是⊙O的切线;

2)连接OCDEF,若OFFC,试判断ABC的形状,并说明理由;

3)若,求⊙O的半径.

 

(1)见解析;(2)等腰直角三角形,理由见解析;(3)3. 【解析】 (1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°即可; (2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A=45°即可; (3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可. 【解析】 如右图所示,连接BD, (1)∵AB是直径, ∴∠ADB=90°, ∵O是AB的中点, ∴OA=OB=OD, ∴∠OAD=∠ODA,∠ODB=∠OBD, 同理在Rt△BDC中,E是BC的中点, ∴∠EDB=∠EBD, ∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°, ∴∠OAD=∠CBD, ∴∠ODA=∠EBD, 又∵∠ODA+∠ODB=90°, ∴∠EBD+∠ODB=90°, 即∠ODE=90°, ∴DE是⊙O的切线. (2)答:△ABC的形状是等腰直角三角形. 理由是:∵E、F分别是BC、OC的中点, ∴EF是三角形OBC的中位线, ∴EF∥AB, DE⊥BC, OB=OD,四边形OBED是正方形, 连接OE, OE是△ABC的中位线,OE∥AC, ∠A=∠EOB=45度, ∴∠A=∠ACB=45°, ∵∠ABC=90°, ∴△ACB是等腰直角三角形. (3)设AD=x,CD=2x, ∵∠CDB=∠CBA=90°,∠C=∠C, ∴△CDB∽△CBA, ∴, ∴, x=2, AC=6, 由勾股定理得:AB==6, ∴圆的半径是3. 答:⊙O的半径是3.
复制答案
考点分析:
相关试题推荐

2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.

(1)第一批脐橙每件进价多少元?

(2)陈老板以每件120元的价格销售第二批脐橙,售出后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价-进价)

 

查看答案

已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.

1)求从袋中随机摸出一个球是红球的概率.

2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.

3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.

 

查看答案

如图,在平面直角坐标系中有ABC,其中A(﹣34),B(﹣42),C(﹣21).把ABC绕原点顺时针旋转90°,得到A1B1C1.再把A1B1C1向左平移2个单位,向下平移5个单位得到A2B2C2

1)画出A1B1C1A2B2C2

2)直接写出点B1B2坐标.

3Pab)是ABCAC边上任意一点,ABC经旋转平移后P对应的点分别为P1P2,请直接写出点P1P2的坐标.

 

查看答案

已知:如图,矩形ABCD中,DEBCE,且DEADAFDEF

求证:ABAF

 

查看答案

解方程组

1;(2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.