满分5 > 初中数学试题 >

如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0). (...

如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

 

(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,). 【解析】 此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标。 (1)由题意可得,解得, ∴抛物线解析式为y=﹣x2+2x+3; (2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴F(1,4), ∵C(0,3),D(2,3), ∴CD=2,且CD∥x轴, ∵A(﹣1,0), ∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4; ②∵点P在线段AB上, ∴∠DAQ不可能为直角, ∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°, i.当∠ADQ=90°时,则DQ⊥AD, ∵A(﹣1,0),D(2,3), ∴直线AD解析式为y=x+1, ∴可设直线DQ解析式为y=﹣x+b′, 把D(2,3)代入可求得b′=5, ∴直线DQ解析式为y=﹣x+5, 联立直线DQ和抛物线解析式可得,解得或, ∴Q(1,4); ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3), 设直线AQ的解析式为y=k1x+b1, 把A、Q坐标代入可得,解得k1=﹣(t﹣3), 设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t, ∵AQ⊥DQ, ∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=, 当t=时,﹣t2+2t+3=, 当t=时,﹣t2+2t+3=, ∴Q点坐标为(,)或(,); 综上可知Q点坐标为(1,4)或(,)或(,).
复制答案
考点分析:
相关试题推荐

如图:AD是正ABC的高,OAD上一点,⊙O经过点D,分别交ABACEF

1)求∠EDF的度数;

2)若AD6,求AEF的周长;

3)设EFAD相较于N,若AE3EF7,求DN的长.

 

查看答案

已知反比例函数y的图象的一支位于第一象限,点Ax1y1),Bx2y2)都在该函数的图象上.

1m的取值范围是     ,函数图象的另一支位于第一象限,若x1x2y1y2,则点B在第     象限;

2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若OAC的面积为6,求m的值.

 

查看答案

如图,RtABC中,∠ABC90°,以AB为直径的⊙OAC边于点DE是边BC的中点,连接DEOD

1)求证:直线DE是⊙O的切线;

2)连接OCDEF,若OFFC,试判断ABC的形状,并说明理由;

3)若,求⊙O的半径.

 

查看答案

2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.

(1)第一批脐橙每件进价多少元?

(2)陈老板以每件120元的价格销售第二批脐橙,售出后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价-进价)

 

查看答案

已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.

1)求从袋中随机摸出一个球是红球的概率.

2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.

3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.