某甜品店用 A,B 两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如下表所示.该店制作甲款甜品 x 份,乙款甜品 y 份,共用去A 原料 2000 克.
原料 款式 | A 原料(克) | B 原料(克) |
甲款甜品 | 30 | 15 |
乙款甜品 | 10 | 20 |
(1)求 y 关于 x 的函数表达式.
(2)已知每份甲甜品的利润为 a 元(a 正整数), 每份乙甜品的利润为 2 元. 假设两款甜品均能全部卖出.
①当 a=3 时,若获得总利润不少于 220 元,则至少要用去 B 原料多少克?
②现有 B 原料 3100 克,要使获利为 450 元且尽量不浪费原材料,甲甜品的每份利润应定为多元?
如图,AB 是⊙O 的弦,半径OE⊥ AB ,P 为 AB 的延长线上一点,PC 与⊙O相切于点 C,连结 CE,交 AB 于点 F,连结 OC.
(1)求证:PC=PF.
(2)连接 BE,若∠CEB=30°,半径为 8,tan P ,求 FB 的长.
如图是一个倾斜角为 的斜坡,将一个小球从斜坡的坡脚 O 点处抛出,落在 A点处,小球的运动路线可以用抛物线来刻画,已知 tan
(1)求抛物线表达式及点 A 的坐标.
(2)求小球在运动过程中离斜坡坡面 OA 的最大距离.
如图,在方格纸中,点A,B,P,Q都在格点上.请按要求画出以AB为边的格点四边形.
(1)在图甲中画出一个▱ABCD,使得点P为▱ABCD的对称中心;
(2)在图乙中画出一个▱ABCD,使得点P,Q都在▱ABCD的对角线上.
如图,点 A,B,C,D 依次在同一条直线上,点 E,F 分别在直线 AD 的两侧,已知 BE//CF,∠A=∠D,AE=DF.
(1)求证:四边形 BFCE 是平行四边形.
(2)若 AD=10,EC=3,∠EBD=60°,当四边形 BFCE是菱形时,求 AB 的长.
某次模拟考试后,抽取 m 名学生的数学成绩进行整理分组,形成如下表格(x 代表成绩),并绘制出扇形统计图和频数分布直方图(横坐标表示成绩,单位:分).
A 组 | 140<x≤150 |
B 组 | 130<x≤140 |
C 组 | 120<x≤130 |
D 组 | 110<x≤120 |
E 组 | 100<x≤110 |
(1)m 的值为多少,扇形统计图中 D 组对应的圆心角是多少度.
(2)请补全条形统计图,并标注出相应的人数.
(3)若此次考试数学成绩 130 分以上的为优秀,参加此次模拟考的学生总数为 2000,请估算此次考试数学成绩优秀的学生人数.