满分5 > 初中数学试题 >

抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3). ...

抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

 

(1)y=﹣x2+2x+3;(2)当a=时,△BDC的面积最大,此时P(,);(3)m的变化范围为:﹣≤m≤5 【解析】 试题 【解析】 (1)由题意得:,解得:, ∴抛物线解析式为; (2)令, ∴x1= -1,x2=3,即B(3,0), 设直线BC的解析式为y=kx+b′, ∴,解得:, ∴直线BC的解析式为, 设P(a,3-a),则D(a,-a2+2a+3), ∴PD=(-a2+2a+3)-(3-a)=-a2+3a, ∴S△BDC=S△PDC+S△PDB , ∴当时,△BDC的面积最大,此时P(,); (3)由(1),y=-x2+2x+3=-(x-1)2+4, ∴OF=1,EF=4,OC=3, 过C作CH⊥EF于H点,则CH=EH=1, 当M在EF左侧时, ∵∠MNC=90°, 则△MNF∽△NCH, ∴, 设FN=n,则NH=3-n, ∴, 即n2-3n-m+1=0, 关于n的方程有解,△=(-3)2-4(-m+1)≥0, 得m≥, 当M在EF右侧时,Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°, 作EM⊥CE交x轴于点M,则∠FEM=45°, ∵FM=EF=4, ∴OM=5, 即N为点E时,OM=5, ∴m≤5, 综上,m的变化范围为:≤m≤5.
复制答案
考点分析:
相关试题推荐

有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90o后得到矩形AMEF(如图1),连接BDMF,若BD=16cm,∠ADB=30o.

  

⑴试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;

⑵把BCD MEF 剪去,将ABD绕点A顺时针旋转得AB1D1,边AD1FM 于点K(如图2),设旋转角为β(0oβ90o),当AFK 为等腰三角形时,求β的度数;

⑶若将AFM沿AB方向平移得到A2F2M2(如图3)F2M2AD交于点PA2M2BD交于点N,当NPAB时,求平移的距离.

 

查看答案

小王是新星厂的一名工人,请你阅读下列信息:

信息一:工人工作时间:每天上午8001200,下午14001800,每月工作25天;

信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:

生产甲产品数(件)

生产乙产品数(件)

所用时间(分钟)

10

10

350

30

20

850

 

信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.

信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:

1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;

220181月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?

 

查看答案

如图,校园有两条路OAOB,在交叉口附近有两块宣传牌CD,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)

 

查看答案

某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°0.54cos33°≈0.84tan33°0.65≈1.41

 

查看答案

如图,⊙O是△ABC的外接圆,点OBC边上,∠BAC的平分线交⊙O于点D,连接BDCD,过点DBC的平行线与AC的延长线相交于点P

1)求证:PD是⊙O的切线;

2)求证:AB•CPBD•CD

3)当AB5cmAC12cm时,求线段PC的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.