满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点...

如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y-x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果ABC的面积为30,求平移后的直线l2的函数表达式.

 

(1)y= ;(2)y=﹣x+; 【解析】 (1)直线l1:y= - x经过点A,且A点的纵坐标是2,可得A(-4,2),代入反比例函数解析式可得k的值;(2)根据图象得到点B的坐标,进而直接得到﹣ x> 的解集即可;(3)设平移后的直线 与 x 轴交于点 D,连接 AD,BD,由平行线的性质可得出S△ABC=S△ABF,即可得出关于OD的一元一次方程,解方程即可得出结论. (1)∵直线 l1:y=﹣x 经过点 A,A 点的纵坐标是 2, ∴当 y=2 时,x=﹣4, ∴A(﹣4,2), ∵反比例函数 y=的图象经过点 A, ∴k=﹣4×2=﹣8, ∴反比例函数的表达式为 y=﹣; (2)∵直线 l1:y=﹣x 与反比例函数 y=的图象交于 A,B 两点, ∴B(4,﹣2), ∴不等式﹣ x> 的解集为 x<﹣4 或 0<x<4; (3)如图,设平移后的直线 与 x 轴交于点 D,连接 AD,BD, ∵CD∥AB, ∴△ABC 的面积与△ABD 的面积相等, ∵△ABC 的面积为 30, ∴S△AOD+S△BOD=30,即 OD(|yA|+|yB|)=30, ∴×OD×4=30, ∴OD=15, ∴D(15,0), 设平移后的直线 的函数表达式为 y=﹣x+b, 把 D(15,0)代入,可得 0=﹣×15+b, 解得 b=, ∴平移后的直线 的函数表达式为 y=-.
复制答案
考点分析:
相关试题推荐

如图,AB是⊙O的直径,,EOB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.

(1)求证:直线BF是⊙O的切线;

(2)若OB=2,求BD的长.

 

查看答案

某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.

1)第一次购书的进价是多少元?

2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?

 

查看答案

如图,∠ABC90°BC6ADDC,∠ADC60°

1)求AC长.

2)求ADC的面积.

 

查看答案

某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:

        

 

成绩x/

频数

频率

1

x<60

2

0.04

2

60≤x<70

6

0.12

3

70≤x<80

9

b

4

80≤x<90

a

0.36

5

90≤x≤100

15

0.30

 

请根据所给信息,解答下列问题:

(1)a______b______

(2)请补全频数分布直方图;

(3)样本中,部分学生成绩的中位数落在第_______

(4)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?

 

 

查看答案

不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)

(1)两次取的小球都是红球的概率;

(2)两次取的小球是一红一白的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.