如图,在矩形ABCD中,AC为对角线,点P为BC边上一动点,连接AP,过点B作BQ⊥AP,垂足为Q,连接CQ.
⑴证明:△ABP∽△BQP;
⑵当点P为BC的中点时,若∠BAC=37°,求∠CQP的度数;
⑶当点P运动到与点C重合时,延长BQ交CD于点F,若AQ=AD,则等于多少.
如图,在平面直角坐标系中,抛物线与轴相交于原点和点,点在抛物线上.
(1)求抛物线的表达式,并写出它的对称轴;
(2)求的值.
如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡AF上的D处测得大树顶端B的仰角是30°,在地面上A处测得大树顶端B的仰角是45°.若坡角∠FAE=30°,AD=6m,求大树的高度.(结果保留整数,参考数据:≈1.73)
如图,一块材料的形状是锐角三角形ABC,边BC长120mm,高AD为80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)图中与△ABC相似的三角形是哪一个,说明理由;
(2)这个正方形零件的边长为多少?
如图,已知直线AC与⊙O相交于点C,直线AO与⊙O相交于D,B两点.已知∠ACD=∠B.
(1)求证:AC是⊙O的切线;
(2)若AC=6,AD=4,求⊙O的半径;
某校课程中心为了了解学生对开设的3D打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图.
(1)求图①中的值,补全图②中的条形统计图,标上相应的人数;
(2)若该校共有1800名学生,则该校最喜爱3D打印课程的学生约有多少人?