满分5 > 初中数学试题 >

如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=...

如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.   

(1)①直接写出点B的坐标;②求抛物线解析式.

(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.

(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,直接写出点M的坐标;若不存在,请说明理由.

 

(1)①B(1,0)②(2)4,P(-2,3);(3)存在M1(0,2),M2(-3,2), M3(2,-3),M4(5,-18), 使得以点 A、M、N为顶点的三角形与△ABC相似. 【解析】 试题(1)①先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;②设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值; (2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=-m2﹣2m,然后利用三角形的面积公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标; (3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC; ④当点M在第四象限时,解题时,需要注意相似三角形的对应关系. 试题解析:(1)①y=x+2 当x=0时,y=2,当y=0时,x=﹣4, ∴C(0,2),A(﹣4,0), 由抛物线的对称性可知:点A与点B关于x=﹣对称, ∴点B的坐标为(1,0). ②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0), ∴可设抛物线解析式为y=a(x+4)(x﹣1), 又∵抛物线过点C(0,2), ∴2=﹣4a ∴a=- ∴y=-x2-x+2. (2)设P(m,-m2-m+2). 过点P作PQ⊥x轴交AC于点Q, ∴Q(m,m+2), ∴PQ=-m2-m+2﹣(m+2) =-m2﹣2m, ∵S△PAC=×PQ×4, =2PQ=﹣m2﹣4m=﹣(m+2)2+4, ∴当m=﹣2时,△PAC的面积有最大值是4, 此时P(﹣2,3). (3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=, ∴∠CAO=∠BCO, ∵∠BCO+∠OBC=90°, ∴∠CAO+∠OBC=90°, ∴∠ACB=90°, ∴△ABC∽△ACO∽△CBO, 如下图: ①当M点与C点重合,即M(0,2)时,△MAN∽△BAC; ③ 根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC; ④ 当点M在第四象限时,设M(n,-n2-n+2),则N(n,0) ∴MN=n2+n﹣2,AN=n+4 当时,MN=AN,即n2+n﹣2=(n+4) 整理得:n2+2n﹣8=0 解得:n1=﹣4(舍),n2=2 ∴M(2,﹣3); 当时,MN=2AN,即n2+n﹣2=2(n+4), 整理得:n2﹣n﹣20=0 解得:n1=﹣4(舍),n2=5, ∴M(5,﹣18). 综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.
复制答案
考点分析:
相关试题推荐

如图,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB⊙O的切线.   

(2)已知AO⊙O于点E,延长AO⊙O于点D,tanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

 

查看答案

如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

 

查看答案

已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

 

查看答案

随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了     人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为     

(2)将条形统计图补充完整.观察此图,支付方式的众数     ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

 

查看答案

如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.

(1)计算古树BH的高;

(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.