满分5 > 初中数学试题 >

甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线...

甲、乙两人分别站在相距6米的AB两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE4米,现以A为原点,直线ABx轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.

 

米. 【解析】 先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值. 由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4, 设抛物线的表达式为:y=ax2+bx+1(a≠0), 则据题意得:, 解得:, ∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1, ∵y=﹣(x﹣4)2+, ∴飞行的最高高度为:米.
复制答案
考点分析:
相关试题推荐

如图,⊙O是△ABC的外接圆,过点A作⊙O的切线交BC的延长线于点D

1)求证:∠CAD=∠B

2)若AC是∠BAD的平分线,sinBBC2.求⊙O的半径.

 

查看答案

如图,已知反比例函数y的图象与一次函数yx+b的图象交于点A14),点B(﹣4n).

1)求nb的值;

2)求OAB的面积;

3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

 

查看答案

车辆经过润扬大桥收费站时,4个收费通道 ABCD中,可随机选择其中的一个通过.

1)一辆车经过此收费站时,选择 A通道通过的概率是     

2)求两辆车经过此收费站时,选择不同通道通过的概率.

 

查看答案

如图,在平面直角坐标系中,ABC的顶点为A(﹣3,﹣2),B(﹣5,3),C(0,4).

(1)以C为旋转中心,将ABCC逆时针旋转90°,画出旋转后的对应的A1B1C1,写出点A1的坐标;

(2)求出(1)中点B旋转到点B1所经过的路径长(结果保留根号和π).

 

查看答案

计算

(1)2(x﹣3)=3x(x﹣3)

(2)已知且3x+4z﹣2y=40,求x,y,z的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.