如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是( )
A. 90﹣α B. α C. D.
点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是( )
A. y1=y2>y3 B. y1>y2>y3 C. y3>y2>y1 D. y3>y1=y2
小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
A. 1 B. C. D.
若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是( )
A. (3,﹣2) B. (1,﹣6)
C. (﹣1,6) D. (﹣1,﹣6)
如图1,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,顶点为D,连接BC
(1)点G是直线BC上方抛物线上一动点(不与B、C重合),过点G作y轴的平行线交直线BC于点E,作GF⊥BC于点F,点M、N是线段BC上两个动点,且MN=EF,连接DM、GN.当△GEF的周长最大时,求DM+MN+NG的最小值;
(2)如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将△DPQ沿PQ翻折,且线段D′P的中点恰好落在线段BQ上,将△AOC绕点O逆时针旋转60°得到△A′OC′,点T为坐标平面内一点,当以点Q、A′、C′、T为顶点的四边形是平行四边形时,求点T的坐标.
已知如图 1,在中,,,点在上,交于,点是的中点.
(1)写出线段与线段的关系并证明;
(2)如图,将绕点逆时针旋转,其它条件不变,线段与线段的关系是否变化,写出你的结论并证明;
(3)将 绕点逆时针旋转一周,如果,直接写出线段的范围.