如图,AB是⊙O的直径,点C在⊙O上,CE⊥AB于E,BD交CE于点F,CF=BF.
(1)求证:C是的中点;
(2)若CD=4,AC=8,则⊙O的半径为 .
如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
已知△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC绕点A按逆时针方向旋转90°后的△A′B′C′;
(2)在(1)的条件下,求点C旋转到点C′所经过的路线长及线段AC旋转到新位置时所划过区域的面积.
现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.
(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;
(2)求乙投放的两袋垃圾不同类的概率.
如图所示,Rt△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,cotA=,求tan∠DBC的值.
已知反比例函数的图象经过点A(2,6).
(1)求这个反比例函数的解析式;
(2)这个函数的图象位于哪些象限?y随x的增大如何变化?
(3)点B(3,4),C(5,2),D(,)是否在这个函数图象上?为什么?