某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).
(1)求该店主包邮单价定为53元时每周获得的利润;
(2)求y与x之间的函数关系式;
(3)该店主包邮单价定为多少元时,每周获得的利润最大?最大值是多少?
如图,一次函数y1=x﹣与x轴交点A恰好是二次函数y2与x轴的其中一个交点,已知二次函数图象的对称轴为x=1,并与y轴的交点为D(0,1).
(1)求二次函数的解析式;
(2)设该二次函数与一次函数的另一个交点为C点,连接DC,求三角形ADC的面积.
(3)根据图象,直接写出当y1>y2时x的取值范围.
如图,已知四边形ABCD是平行四边形,P为DC延长线上一点,AP分别交BD,BC于点M,N.
(1)图中相似三角形共有_____对;
(2)证明:AM2=MN•MP;
(3)若AD=6,DC:CP=2:1,求BN的长.
(1)计算:.
(2)解方程:3x2﹣4x﹣1=0.
如图,直线a与直线b相交于点A,与直线c交于点B,∠l=120°,∠2=45°.若将直线b绕点A逆时针旋转一定角度,使直线b与直线c平行,则这个旋转角至少是__________°.
如图,在△ABC中,AD是高,BD=6,CD=4,tan∠BAD=,P是线段AD上一动点,一机器人从点A出发沿AD以个单位/秒的速度走到P点,然后以1个单位/秒的速度沿PC走到C点,共用了t秒,则t的最小值为_____.