在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=_____°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 | ____ | 4.5 | 6 |
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为_____cm.
如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)若以P,F,E为顶点的三角形也与△ABE相似,试求x的值;
(3)试求当x取何值时,以D为圆心,DP为半径的⊙D与线段AE只有一个公共点.
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?
在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)
(1)画出△ABC关于原点对称的△A'B'C';
(2)将△A'B'C'绕点C'顺时针旋转90°,画出旋转后得到的△A″B″C″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)
某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).
(1)求该店主包邮单价定为53元时每周获得的利润;
(2)求y与x之间的函数关系式;
(3)该店主包邮单价定为多少元时,每周获得的利润最大?最大值是多少?
如图,一次函数y1=x﹣与x轴交点A恰好是二次函数y2与x轴的其中一个交点,已知二次函数图象的对称轴为x=1,并与y轴的交点为D(0,1).
(1)求二次函数的解析式;
(2)设该二次函数与一次函数的另一个交点为C点,连接DC,求三角形ADC的面积.
(3)根据图象,直接写出当y1>y2时x的取值范围.