分式无意义,则x的值( )
A. B. C. 1 D. 0
下列各式-3x,,,-,,,中,分式的个数为( )
A. 1 B. 2 C. 3 D. 4
在一次课题学习中活动中,老师提出了如下一个问题:
点P是正方形ABCD内的一点,过点P画直线l分别交正方形的两边于点M、N,使点P是线段MN的三等分点,这样的直线能够画几条?
经过思考,甲同学给出如下画法:
如图1,过点P画PE⊥AB于E,在EB上取点M,使EM=2EA,画直线MP交AD于N,则直线MN就是符合条件的直线l.
根据以上信息,解决下列问题:
(1)甲同学的画法是否正确?请说明理由.
(2)在图1中,能否画出符合题目条件的直线?如果能,请直接在图1中画出.
(3)如图2,A1、C1分别是正方形ABCD的边AB、CD上的三等分点,且A1C1∥AD.当点P在线段A1C1上时,能否画出符合题目条件的直线?如果能,可以画出几条?
(4)如图3,正方形ABCD边界上的A1、A2、B1、B2、C1、C2、D1、D2都是所在边的三等分点.当点P在正方形ABCD内的不同位置时,试讨论,符合题目条件的直线l的条数的情况.
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个。例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个。
(1)根据题意,完成下表:
车站序号 | 在第x车站启程时邮政车厢邮包总数 |
1 | n-1 |
2 | (n-1)-1+(n-2)=2(n-2) |
3 | 2(n-2)-2+(n-3)=3(n-3) |
4 |
|
5 |
|
… | …… |
n |
|
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、
n表示)。
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)
40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36
34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45
(1)补全频率分布表和频率分布直方图.
分组 | 频数 | 频率 |
4.5﹣22.5 | 2 | 0.050 |
22.5﹣30.5 | 3 |
|
30.5﹣38.5 | 10 | 0.250 |
38.5﹣46.5 | 19 |
|
46.5﹣54.5 | 5 | 0.125 |
54.5﹣62.5 | 1 | 0.025 |
合计 | 40 | 1.000 |
(2)填空:在这个问题中,总体是____,样本是____.由统计结果分析的,这组数据的平均数是38.35(分),众数是____,中位数是_____.
(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?
(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?
已知函数和.
(1)如图所示的坐标系中画出这两个函数的图象.
(2)求这两个函数交点坐标.
(3)观察图象,当在什么范围内, ?