满分5 > 初中数学试题 >

某学习小组做“用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示折...

某学习小组做用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是(   )

A. 掷一枚正六面体的骰子,出现1点朝上

B. 任意写一个整数,它能被2整除

C. 不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球

D. 先后两次掷一枚质地均匀的硬币,两次都出现反面

 

C 【解析】 根据统计图可知,实验结果在0.33附近波动,及其概率,计算四个选项的概率,约为0.33的即为正确答案. 【解析】 A、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为≈0.17,不符合题意; B、任意写一个整数,它能2被整除的概率为,不符合题意; C、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率≈0.33,符合题意; D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意; 故选:C.
复制答案
考点分析:
相关试题推荐

下列各式中,与是同类二次根式的是(    )

A.  B.  C.  D.

 

查看答案

下列计算正确的是(   )

A. =-2 B. =

C.  D.

 

查看答案

问题提出

(1)如图①,在ABC中,∠A=120°,AB=AC=5,则ABC的外接圆半径R的值为 

问题探究

(2)如图②O的半径为13,弦AB=24,MAB的中点,P是⊙O上一动点,求PM的最大值.

问题解决

(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在线段ABAC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EFFP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).

           

图①                    图②                      图③

 

查看答案

已知四边形ABCD⊙O的内接四边形,AC⊙O的直径,DE⊥AB,垂足为E.

(1)延长DE⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;

(2)过点BBG⊥AD,垂足为G,BGDE于点H,且点O和点A都在DE的左侧,如图2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.

 

查看答案

如图,已知D,E分别为ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F上一点,连接FE并延长交AC的延长线于点N,交AB于点M.

(1)若∠EBDα,请将∠CAD用含α的代数式表示;

(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;

(3)在(2)的条件下,若AD=,求的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.