满分5 > 初中数学试题 >

如图,抛物线与轴交于点和,与轴交于点. (1)求抛物线的解析式; (2)若点是抛...

如图,抛物线轴交于点,与轴交于点

1)求抛物线的解析式;

2)若点是抛物线上在轴下方的动点,过轴交直线于点,求线段的最大值;

3是抛物线对称轴上一点,是抛物线上一点,是否存在以为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.

 

(1)y=x2﹣4x+3;(2);(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3). 【解析】 (1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式; (2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题; (3)讨论:当以AB为对角线,利用EA=EB和四边形AFBE为平行四边形得到四边形AFBE为菱形,则点F也在对称轴上,即F点为抛物线的顶点,所以F点坐标为(-1,-4);当以AB为边时,根据平行四边形的性质得到EF=AB=4,则可确定F的横坐标,然后代入抛物线解析式得到F点的纵坐标. 【解析】 (1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中, 得: , 解得:. 故抛物线的解析式为y=x2﹣4x+3. (2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3, 把点B(3,0)代入y=kx+3中, 得:0=3k+3,解得:k=﹣1, ∴直线BC的解析式为y=﹣x+3. ∵MN∥y轴, ∴点N的坐标为(m,﹣m+3). ∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1, ∴抛物线的对称轴为x=2, ∴点(1,0)在抛物线的图象上, ∴1<m<3. ∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+, ∴当m=时,线段MN取最大值,最大值为. (3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3). 当以AB为对角线,如图1, ∵四边形AFBE为平行四边形,EA=EB, ∴四边形AFBE为菱形, ∴点F也在对称轴上,即F点为抛物线的顶点, ∴F点坐标为(2,﹣1); 当以AB为边时,如图2, ∵四边形AFBE为平行四边形, ∴EF=AB=2,即F2E=2,F1E=2, ∴F1的横坐标为0,F2的横坐标为4, 对于y=x2﹣4x+3, 当x=0时,y=3; 当x=4时,y=16﹣16+3=3, ∴F点坐标为(0,3)或(4,3). 综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).
复制答案
考点分析:
相关试题推荐

如图,在中,,点点出发,沿着以每秒的速度向点运动;同时点点出发,沿以每秒的速度向点运动,设运动时间为秒.

1)当为何值时,

2)是否存在某一时刻,使?若存在,求出此时的长;若不存在,请说理由;

3)当时,求的值.

 

查看答案

俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.

(1)请直接写出yx之间的函数关系式和自变量x的取值范围;

(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?

(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?

 

查看答案

如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°

1)求证:ABBD

2)求证铁塔AB的高度.(结果精确到0.1米,其中1.41≈1.73

 

查看答案

如图,在等腰中,,以为直径作交边于点,过点于点,延长的延长线于点

1)求证:的切线;

2)若,求的长.

 

查看答案

一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为

1)求口袋中黄球的个数;

2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用树状图法列表法,求两次摸出都是红球的概率;

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.