某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
排球 | 10 | 9.5 | 9.5 | 10 | 8 | 9 | 9.5 | 9 |
| 7 | 10 | 4 | 5.5 | 10 | 9.5 | 9.5 | 10 |
篮球 | 9.5 | 9 | 8.5 | 8.5 | 10 | 9.5 | 10 | 8 |
| 6 | 9.5 | 10 | 9.5 | 9 | 8.5 | 9.5 | 6 |
整理、描述数据:按如下分数段整理、描述这两组样本数据:
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
分析数据:两组样本数据的平均数、中位数、众数如下表所示:
项目 | 平均数 | 中位数 | 众数 |
排球 | 8.75 | 9.5 | 10 |
篮球 | 8.81 | 9.25 | 9.5 |
得出结论:
(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
(1)求证:EF与⊙O相切;
(2)若AE=6,sin∠CFD=,求EB的长.
如图,在平面直角坐标系中,一次函数(a为常数)的图象与y轴相交于点A,与函数(x>0)的图象相交于点B(m,1).
(1)求点B的坐标及一次函数的解析式;
(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.
已知关于x的一元二次方程.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若m是方程的一个实数根,求m的值.
如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE=∠C,求证:△ABF∽△EAD.
下面是小飞设计的“过圆外一点作圆的切线”的尺规作图过程.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
作法:如图,
①连接OP,作线段OP的垂直平分线交OP于点A;
②以点A为圆心,OA的长为半径作圆,交⊙O于B,C两点;
③作直线PB,PC.所以直线PB,PC就是所求作的切线.
根据小飞设计的尺规作图过程,
(1)使用直尺和圆规补全图形(保留作图痕迹);
(2)完成下面的证明(说明:括号里填写推理的依据).
证明:连接,,
∵为⊙的直径,
∴ ( ).
∴,.
∴,为⊙的切线( ).