满分5 > 初中数学试题 >

如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=a...

如图:在平面直角坐标系中,直线l:y=x﹣x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=

(1)求抛物线的解析式;

(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PBx轴于点B,PCy轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PEPF;

(3)若(2)中的点P坐标为(6,2),点Ex轴上的点,点Fy轴上的点,当PEPF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.

 

(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6). 【解析】 (1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可; (2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可; (3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可. (1)当y=0时,,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得, 解得,抛物线的解析式为y=x2﹣3x﹣4; (2)∵平移直线l经过原点O,得到直线m, ∴直线m的解析式为y=x. ∵点P是直线1上任意一点, ∴设P(3a,a),则PC=3a,PB=a. 又∵PE=3PF, ∴. ∴∠FPC=∠EPB. ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP⊥PE. (3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a. ∵CF=3BE=18﹣3a, ∴OF=20﹣3a. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴,, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q(﹣2,6). 如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6. ∵CF=3BE=3a﹣18, ∴OF=3a﹣20. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴,, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q(2,﹣6). 综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).
复制答案
考点分析:
相关试题推荐

如图1,将两个完全相同的三角形纸片ABCDEC重合放置,其中C=900B=E=300.

1)操作发现如图2,固定ABC,使DEC绕点C旋转。当点D恰好落在BC边上时,填空:线段DEAC的位置关系是     

BDC的面积为S1AEC的面积为S2。则S1S2的数量关系是     

2)猜想论证

DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1S2的数量关系仍然成立,并尝试分别作出了BDCAECBCCE边上的高,请你证明小明的猜想。

3)拓展探究

已知ABC=600D是其角平分线上一点,BD=CD=4OEABBC于点E(如图4),若在射线BA上存在点F,使SDCF =SBDC,直接写出相应的BF的长

 

查看答案

为迎接五一国际劳动节,某校团委组织了“劳动最光荣”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x件,买50件奖品的总钱数是w元.

1)求wx的函数关系式及自变量的取值范围;

2)请你计算一下,如何购买这三种奖品所花的总钱数最少?最少是多少元?

一等奖

二等奖

三等奖

12

10

5

 

 

 

查看答案

如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°CD⊥AB与点EEBA在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈17≈14

 

查看答案

如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,DAB延长线的一点,AECDDC的延长线于ECFABF,且CECF

1)求证:DE是⊙O的切线;

2)若AB6BD3,求AEBC的长.

 

查看答案

201265日是世界环境日,南宁市某校举行了绿色家园演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).

1)分数段在-----范围的人数最多;

2)全校共有多少人参加比赛?

3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用列表法树形图法表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.