满分5 > 初中数学试题 >

为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以...

为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:祖冲之奖刘徽奖赵爽奖杨辉奖,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获祖冲之奖的学生成绩统计表:

祖冲之奖的学生成绩统计表:

分数/

80

85

90

95

人数/

4

2

10

4

 

根据图表中的信息,解答下列问题:

(1)这次获得刘徽奖的人数是_____,并将条形统计图补充完整;

(2)获得祖冲之奖的学生成绩的中位数是_____分,众数是_____分;

(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字2”1”“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(xy).用列表法或树状图法求这个点在第二象限的概率.

 

(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限). 【解析】 (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得; (2)根据中位数和众数的定义求解可得; (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得. (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下: 故答案为:40; (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分. 故答案为:90、90; (3)列表法: ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
复制答案
考点分析:
相关试题推荐

小婷在放学路上,看到隧道上方有一块宣传中国﹣南亚博览会的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)

 

查看答案

尺规作图:

已知:∠AOB

求作:射线OC,使它平分∠AOB

作法:

1)以O为圆心,任意长为半径作弧,交OAD,交OBE

2)分别以DE为圆心,大于DE的同样长为半径作弧,两弧相交于点C

3)作射线OC

所以射线OC就是所求作的射线.

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:连结CECD

OEOD          OCOC

∴△OEC≌△ODC(依据:     ),

∴∠EOC=∠DOC

OC平分∠AOB

 

查看答案

先化简,再求值(1,其中x4

 

查看答案

计算:||+10+2sin45°2cos30°+1

 

查看答案

如图,点DC的坐标分别为(1,﹣4)(5,﹣4),抛物线的顶点在线段CD上运动(抛物线随顶点一起平移),与x轴交于AB两点(AB的左侧),点B的横坐标最大值为3,则点A的横坐标最小值为______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.